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Abstract 
The endocannabinoid system (ECS) serves as a sophisticated bio-regulatory network 
orchestrating a multitude of physiological processes to maintain systemic 
homeostasis. However, recent research has unveiled an expanded conceptualization 
known as the endocannabinoidome (eCBome), reflecting the intricate complexity and 
dynamic nature of this system. The eCBome encompasses a broader array of lipid 
mediators, enzymes, molecular targets, and signaling pathways beyond the classical 
ECS components, including endocannabinoid receptor heterodimers and their 
bidirectional signaling cross-talk with other receptor systems. This expanded 
perspective has far-reaching implications for human health and disease, unveiling new 
therapeutic avenues across various pathological conditions. This comprehensive article 
provides an in-depth analysis of the eCBome, exploring its multifaceted physiological 
functions spanning neuromodulation, pain management, neuroplasticity, immune 
regulation, metabolic homeostasis, cardiovascular regulation, and specialized systems 
like reproduction and musculoskeletal function. It highlights leveraging the eCBome for 
developing targeted interventions like cannabis-based medicinal products (CBMPs). 
The article addresses integrating eCBome knowledge into medical curricula, 
establishing guidelines for authorizing and monitoring CBMPs, and addressing stigma. 
Moreover, it explores the potential of complementing CBMPs with lifestyle interventions 
like diet, exercise, and mind-body practices to synergistically modulate the eCBome. 
Future directions include longitudinal studies, exploring endogenous eCBome 
mediators for therapeutic applications, novel drug development, interdisciplinary 
collaborations, and computational approaches to fully understand the complex 
interactions between its various components, receptors, and signaling pathways. 
Elucidating these intricate mechanisms is crucial for developing targeted and 
personalized therapeutic interventions with optimal efficacy and minimal side effects. 
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I. Introduction 
 
The endocannabinoid system (ECS) is a crucial biological network that maintains 
homeostasis within the human body, comprising the cannabinoid receptors CB1 and 
CB2, and their endogenous lipid-derived ligands like anandamide (AEA) and 2-
arachidonoylglycerol (2-AG) [1,2,3]. The ECS regulates diverse physiological processes 
such as pain, mood, appetite, energy metabolism, immunity, and neuronal plasticity 
[1,2]. 
 
The endocannabinoidome (eCBome) represents an expanded conceptualization, 
encompassing a broader array of lipid mediators, receptors, and enzymes that interact 
with and modulate the ECS [4]. Beyond AEA and 2-AG, the eCBome includes N-
acylethanolamines (e.g., oleoylethanolamide (OEA), palmitoylethanolamide (PEA)), 2-
acylglycerols, fatty acid amides, and bioactive lipids like resolvin D2 [4,5]. These diverse 
components interact with various receptors, including cannabinoid, transient receptor 
potential (TRP), peroxisome proliferator-activated (PPAR), and G protein-coupled 
receptors (GPCRs), contributing to the eCBome's multifaceted effects [6,7,8]. 
 
In addition, the eCBome encompasses an expanded range of enzymes involved in lipid 
mediator biosynthesis and metabolism, such as cyclooxygenases (COX), lipoxygenases 
(LOX), and cytochrome P450 enzymes [4,9]. This broader enzymatic regulation implies a 
more complex modulation of lipid-based signaling pathways within the eCBome. 
 
Recent studies have shed light on the role of receptor heterodimers in the eCBome's 
signaling complexity, adding additional layers of regulation to the system's multifaceted 
effects [10,11]. 
 
Interestingly, phytocannabinoids like tetrahydrocannabinol (THC) and cannabidiol 
(CBD) also interact with various eCBome targets, potentially mimicking or modulating 
endocannabinoid effects on processes like pain, appetite, inflammation, and immunity 
[12,13,14]. 
 
The eCBome's significance lies in its potential to provide a comprehensive 
understanding of the intricate regulatory mechanisms governing various physiological 
processes and their implications for human health and disease. By studying the 
complex interplay between endogenous lipid mediators, their receptors, and diverse 
signaling pathways, researchers aim to develop novel therapeutic interventions for a 
wide range of conditions [4]. 
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Table 1 eCBome-interacting molecules: Their targets, biological functions, mechanisms of action and supporting 
references. 
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II. The eCBome: An Evolving and Fluid Conceptualization 
As research into the endocannabinoid system (ECS) progressed, it became evident that 
this regulatory network exhibits far greater complexity than initially recognized, leading 
to an expanded conceptualization known as the endocannabinoidome (eCBome) [4]. 

 
Table 2 Comparison of the Endocannabinoid System (ECS) and the Expanded Endocannabinoidome (eCBome) 
across various aspects, including ligands, receptors, enzymatic metabolism, mechanisms of action, affected 
signaling pathways, physiological functions, and therapeutic potential and complexity.  

Figure 1 and Table 2 illustrate the expanded repertoire of lipid mediators, enzymes, and 
molecular targets that comprise the eCBome, extending beyond the traditional ECS 
components. This includes diverse lipid mediators like oleamide (ODA), N-
acylethanolamines (e.g., PEA, OEA, LEA, DHEA, AEA), and 2-monoacylglycerols (e.g., 2-
AG, 2-OG, 2-PG, 2-LG) [4,16]. These interact with an expanded repertoire of biosynthetic 
and metabolic enzymes, such as COX, LOX, and CYP450 enzymes [9]. 
 
Moreover, the eCBome targets a wide range of molecular sites beyond CB1 and CB2, 
including TRPV1 channels, PPARs, GPCRs like GPR55, GPR119, GPR110, and voltage-
gated calcium channels [4,5]. 
 
Notably, the eCBome exhibits an additional layer of complexity through receptor 
heterodimers formed between cannabinoid receptors and other GPCRs, such as CB1-
D1/D2, CB1-μ-Opioid, and CB2-GPR55 [10,11]. These heterodimers enable bidirectional 
modulation, where endocannabinoids influence additional GPCR targets, and vice 
versa, regulating diverse processes like motor function, pain perception, and cancer 
cell migration [16,17,18]. As presented in Table 3, recent research highlights the clinical 
relevance of ECS-GPCR heterooligomerization, with CB1-GPR55 and CB2-GPR55 
heterodimers upregulated in multiple sclerosis patients' prefrontal cortex [19]. 
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Table 3 Endocannabinoid Receptor Heterodimers and Their Physiological Relevance 

This figure illustrates various heterodimeric complexes formed between the endocannabinoid system (ECS) G 
protein-coupled receptors (GPCRs) and other receptor types, such as CB1-D1/D2, CB1-μ-Opioid, CB2-GPR55, CB2-
CXCR4, and NMDA-CB1. The table provides details on the endogenous ligands that can modulate these 
heterodimers, their physiological relevance in processes like motor function, pain perception, cancer cell migration, 
and tumor progression, as well as relevant references supporting these interactions. 

The eCBome's regulatory scope is further amplified by this intricate web of interactions, 
with implications for processes such as inflammation, metabolism, and 
neuroprotection, as highlighted by Di Marzo & Piscitelli [4] and Pacher et al. [2]. The 
eCBome concept represents a paradigm shift, acknowledging the complex interplay 
between endogenous bioactive lipids, their receptors, and signaling pathways beyond 
CB1 and CB2 [20,21]. This expanded perspective unveils new therapeutic avenues by 
modulating eCBome components and heterodimer formations [21,7]. 
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Figure 1 Interplay between Dietary Components, the Endocannabinoidome (eCBome), and the Gut Microbiome 

Top Section: The top section depicts different dietary sources, including olive oil, omega-3-rich foods, omega-6-rich 
foods, and dietary fibers, precursors of many endocannabinoid-like molecules. The digestion of dietary fibers by our 
microbiome into short-chain fatty acids (SCFAs) that modulate endocannabinoid levels is also depicted.  

Middle Section: The middle section is the most complex part of the image. It shows various lipid mediators and their 
interactions with different receptors and enzymes. The lipid mediators displayed include ODA (oleamide), PEA, OEA, 
LEA, DHEA, AEA (anandamide), 2-AG, 2-OG, 2-PG, 2-LG, NADA, NAGly, RvD2 (resolvin D2), SDEA and KetoA. 
Additionally, the middle section illustrates the involvement of various enzymes, such as cyclooxygenases (COX), 
lipoxygenases (LOX), cytochrome P450 enzymes (CYP), FAAH, and MAGL. Metabolism of eCBome mediators by COX, 
LOX and CYP generates ‘secondary eCBome mediators, including prostaglandins, thromboxanes, leukotrienes, 
lipoxins and resolvins. 

Bottom Section: The bottom section depicts several receptors and molecular targets that interact with the eCBome 
mediators shown in the middle section. These include GPR55, GPR119, TRPV1, GPR110, CB1, CB2, GPR18, and CaVs 
(voltage-gated calcium channels).  

Top Left Section: The top left section of the image shows two related nuclear receptors, peroxisome proliferator-
activated receptors alpha and gamma (PPAR-alpha and PPAR-gamma), which are activated by many eCBome 
mediators. 
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III. Physiological functions of the eCBome 
The eCBome exerts a multifaceted influence on various physiological processes and 
homeostatic mechanisms, as highlighted in Table 4. 

 
Table 4 Physiological Functions and Homeostatic Mechanisms of the ECS/eCBome 

Neuromodulation and Pain Management 
Endocannabinoids like AEA and 2-AG modulate neurotransmitter release and neuronal 
excitability by interacting with CB1, CB2, and TRPV1 receptors, influencing pain 
perception, mood, and cognition [7,23]. N-acylethanolamines such as PEA and OEA 
exert analgesic and anti-inflammatory effects via PPARs and TRPV1 [24,25]. Preclinical 
studies demonstrate the therapeutic potential of targeting the eCBome for pain 
management, with eCBome modulators exhibiting analgesic effects in neuropathic, 
inflammatory, and migraine pain models [24]. 
 
Moreover, the formation of heterodimeric complexes like CB1-μ-Opioid (Table 3) 
suggests potential implications for the eCBome in modulating pain perception through 
interactions with the endorphin-based analgesic system. 
 

Neuroplasticity, Neuroprotection, and Circadian Rhythms 
The eCBome regulates neuroplasticity through endocannabinoids acting as retrograde 
messengers, modulating synaptic processes crucial for learning, memory, and 
cognition [26,27]. Disruptions in eCBome signaling are implicated in neurodegenerative 
disorders [28]. N-acylethanolamines like PEA and OEA exhibit neuroprotective 
antioxidant and anti-inflammatory effects, potentially mitigating neuronal damage [28]. 
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The eCBome's influence extends to circadian rhythms and sleep architecture. 
Endogenous mediators like N-arachidonoyl-serotonin (AA-5-HT), AEA, PEA, and OEA 
interact with the sleep-wake cycle, influencing sleep homeostasis and neurotransmitter 
regulation through receptors like CB1, CB2, TRPV1, and PPARs [29,30,31]. 

Immune System Regulation 
The eCBome modulates immune responses through pro- and anti-inflammatory effects. 
Endocannabinoids like AEA and 2-AG exert immunosuppressive actions via CB2 
receptors, while N-acylethanolamines like PEA and OEA exhibit anti-inflammatory 
properties through PPARs and TRPV1 [9,32]. This dual role is relevant for inflammatory 
and autoimmune diseases (Table 4). The eCBome also regulates oxidative stress and 
inflammation resolution [32]. Interestingly, this concept aligns with the findings of 
recent studies demonstrating the eCBome's involvement in the gut-brain axis. The 
eCBome exhibits bidirectional communication with the gut microbiome, as certain gut 
bacteria produce bioactive short-chain fatty acids (SCFAs) and endocannabinoid-like 
molecules that modulate endocannabinoid levels. Conversely, the eCBome influences 
the gut microbiome composition and function [33,34]. 

Metabolic Functions and Energy Homeostasis 
Endocannabinoids like AEA and 2-AG stimulate appetite via CB1 receptors in the 
hypothalamus [35]. However, the eCBome's influence extends beyond appetite, with 
mediators like OEA and N-acyl-dopamines modulating lipid and glucose metabolism, 
insulin sensitivity, and energy expenditure through PPARs, GPR119, and TRPV1 (Table 
1). This interplay between the eCBome and metabolic processes has implications for 
obesity, diabetes, and metabolic syndrome. 
 
The health of the eCBome is highly dependent on the dietary precursors we provide. 
Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are essential dietary 
components that significantly influence the eCBome. Figure 2 illustrates the metabolic 
pathways of omega-3 and omega-6 PUFAs and their impact on the eCBome. The 
balance between omega-3 and omega-6 PUFAs is critical for maintaining optimal 
eCBome function. A diet high in omega-6 PUFAs, as depicted by the increasing red area 
in the figure, can lead to elevated levels of AEA and 2-AG, promoting metabolic 
dysfunction and chronic disease. Conversely, omega-3 PUFAs can help modulate these 
effects, highlighting the importance of dietary interventions in managing eCBome-
related metabolic disorders. 
 



The Endocannabinoidome: A Pivotal Physiological Regulator and Therapeutic Target - Implications for Medical Education and 
Personalized Medicine. Broselid Stefan, Ph.D., Scientific Lead. Medical Cannabis Clinicians’ Society UK. June 2024 
 

10 

 
Figure 2 Metabolic pathways of Omega-3 and Omega-6 PUFAs and their impact on the eCBome. 

The diagram highlights the conversion of alpha-linolenic acid (ALA) to various omega-3 PUFAs and linoleic acid (LA) to 
omega-6 PUFAs, with key enzymes such as Delta-6 Desaturase, Delta-5 Desaturase, and Elongase playing crucial 
roles. The figure also shows the downstream effects of these metabolic pathways on the production of 
endocannabinoids like AEA and 2-AG, which interact with CB1 receptors and influence metabolic dysfunction and 
chronic disease. 

Cardiovascular System Interactions 
Endocannabinoids like AEA and 2-AG interact with CB1, CB2, and TRPV1, modulating 
processes that influence blood pressure, vascular tone, and myocardial contractility 
[36,37]. The eCBome is implicated in atherosclerosis development, with 
endocannabinoids contributing to inflammatory processes and plaque formation. 
Conversely, N-acylethanolamines like PEA and OEA exhibit cardioprotective anti-
inflammatory and antioxidant effects through PPARs and TRPV1 [36,37] (Table 1). 
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Gastrointestinal System and Gut Microbiome 
The eCBome regulates gastrointestinal function and gut homeostasis, with 
endocannabinoids and receptors expressed in the gastrointestinal tract, modulating 
motility, secretion, and intestinal permeability [34]. The eCBome exhibits bidirectional 
communication with the gut microbiome, as certain gut bacteria produce bioactive 
SCFAs and endocannabinoid-like molecules that modulate endocannabinoid levels. 
Notably, a recent study demonstrated that KetoA (10-oxo-12(Z)-octadecenoic acid), a 
linoleic acid metabolite produced by gut lactic acid bacteria, can enhance energy 
metabolism by activating TRPV1 [35]. Conversely, the eCBome influences the gut 
microbiome composition and function [33,34]. Additionally, a recent clinical ex-vivo 
study demonstrated that supplementation with Buglossoides arvensis oil, rich in the 
omega-3 fatty acid stearidonic acid (SDA), directly impacts the gut microbiome and 
stimulates the production of endocannabinoid-like molecules, including N-
stearidonoyl-ethanolamine (SDEA) and commendamide, by gut bacteria [38]. These 
studies highlight the ability of dietary interventions to modulate the eCBome through gut 
microbiome-mediated mechanisms. 

Other Specialized Systems 
The eCBome is implicated in reproductive functions like fertility, embryo implantation, 
and parturition, with endocannabinoids and receptors expressed in reproductive 
tissues [39,40]. Additionally, the eCBome modulates bone metabolism and 
musculoskeletal function, with potential implications for osteoporosis and arthritis 
[40,41]. 
 
To summarize the key points, the eCBome orchestrates a delicate balance of regulatory 
mechanisms across various physiological processes and organ systems, underscoring 
its pivotal role in maintaining overall homeostasis and its vast therapeutic potential. 

IV. Lifestyle interventions and eCBome Manipulation 

Emerging evidence suggests that various lifestyle factors can modulate the eCBome, 
offering potential avenues for personalized medicine approaches that complement and 
potentiate the therapeutic effects of CBMPs. 

Diet and Nutrition 
Dietary components influence the eCBome's signaling pathways, as illustrated in Table 
5 and Figure 1. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) modulate 
endocannabinoids and related lipid mediators like AEA, 2-AG, OEA, and PEA (Table 1), 
which interact with receptors including CB1, CB2, PPARs, GPR119, and TRPV1 [42]. A 
Mediterranean diet increases omega-3 derived eCBome mediators while decreasing 
omega-6 derived endocannabinoids like 2-AG and AEA (43). These dietary modulations 
can enhance CBMPs' therapeutic effects by optimizing the eCBome's signaling 
environment. Additionally, in a recent study, researchers demonstrated that 
supplementation with Buglossoides arvensis oil, rich in the omega-3 fatty acid 
stearidonic acid (SDA), can stimulate the production of endocannabinoid-like 
molecules, including N-stearidonoyl-ethanolamine (SDEA) and commendamide, by gut 
bacteria, further highlighting the potential of dietary interventions to modulate the 
eCBome [38]. 
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Figure 1 depicts how dietary sources like olive oil, omega-3/6 foods, and fibers influence 
eCBome mediator production and activity. Dietary fibers modulate the eCBome by 
producing bioactive short-chain fatty acids (SCFAs) that influence endocannabinoid 
levels [33]. The balance between omega-3 and omega-6 PUFAs affects lipid mediator 
production and inflammatory responses. 

Exercise and Physical Activity 
Regular exercise modulates plasmatic endocannabinoid levels like AEA and 2-AG (Table 
1), which interact with CB1, CB2, and TRPV1, affecting neurotransmission, neuronal 
excitability, and pain perception [44,45]. Remarkably, exercise interventions modulate 
gut microbiome composition, influencing endocannabinoid and endocannabinoid-like 
molecule levels like AEA, 2-AG, and OEA, partially mediated by SCFAs produced by gut 
microbes [33]. This underscores the interplay between exercise, gut microbiome, and 
eCBome. 
 
Figure 1 and Table 5 detail how exercise-induced changes in AEA and 2-AG levels can 
modulate their interactions with CB1, CB2, and TRPV1, contributing to exercise's effects 
on the eCBome. Tailoring exercise regimens to individual profiles can optimize eCBome 
modulation and potentially enhance CBMPs' therapeutic effects by synergistically 
modulating the eCBome.  

Mind-Body Practices 
Practices like meditation, yoga, and acupuncture may influence the eCBome and 
signaling pathways involving AEA and 2-AG (Table 1, Table 5, Figure 3), which modulate 
neurotransmission, neuronal excitability, and pain perception via CB1, CB2, and TRPV1 
[46,47,48]. Acupuncture has been linked to modulating endocannabinoid levels and 
cannabinoid receptor activation, suggesting potential synergies with CBMPs in 
managing pain, inflammation, and other conditions by targeting eCBome components 
[49]. 
 

Multimodal manipulation of eCBome  
By integrating knowledge of lifestyle and dietary factors that modulate the eCBome, as 
exemplified by the diverse components and their physiological relevance shown in 
Table 1 and Table 4, healthcare professionals can learn and teach multimodal 
personalized approaches that complement and potentiate the therapeutic effects of 
CBMPs. These interventions may enhance the response to cannabinoids by 
synergistically modulating the eCBome components and signaling pathways, while 
potentially reducing adverse effects and optimizing overall patient outcomes. 
 
For example, a patient with chronic pain or neurological conditions could benefit from a 
personalized regimen that combines CBMPs with a Mediterranean-inspired diet rich in 
omega-3 fatty acids to modulate eCBome mediators like those derived from omega-3 
PUFAs. This could be combined with regular exercise tailored to their fitness level to 
increase AEA and 2-AG levels, and mind-body practices like meditation or yoga to 
further modulate endocannabinoid signaling pathways involving compounds like AEA 



The Endocannabinoidome: A Pivotal Physiological Regulator and Therapeutic Target - Implications for Medical Education and 
Personalized Medicine. Broselid Stefan, Ph.D., Scientific Lead. Medical Cannabis Clinicians’ Society UK. June 2024 
 

13 

and 2-AG. As shown in Table 1, these mediators interact with receptors like CB1, CB2, 
TRPV1, contributing to processes like pain modulation, neuroplasticity, and 
neuroprotection. This multifaceted approach could synergistically modulate the 
eCBome, potentially improving pain management, reducing inflammation, and 
promoting overall well-being by targeting the diverse components and signaling 
pathways of the eCBome. 
 

 
Table 5 Summary of ECS interventions, their main active pharmaceutical ingredients (APIs), molecular targets 
engaged, potential therapeutic indications, and supporting references. 
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Figure 3 Nutritional, Behavioral, and Pharmacological Modulation of the ECS and related pathways. 

This figure delineates the influence of dietary patterns, exercise, mindfulness, and cannabinoids on the ECS. The 
Western Diet, rich in omega-6 fatty acids, is shown to elevate AEA and 2-AG levels, while the Mediterranean Diet, with 
its higher omega-3 content, normalizes ECS signaling. Dietary fibers, through gut microbiome modulation, lead to 
SCFA production, indirectly affecting ECS activity. The microbiome also directly produces bioactive NAEs like SDEA. 
Exercise is depicted as a dual modulator of the ECS, both through SCFA-mediated microbiome changes and direct 
dopamine regulation, impacting the CB1-D1/D2 heteromer. Cannabinoid interactions are detailed, with THC binding 
to CB1 and CB2 receptors and influencing GPR55 and GPR18, while CBD activates PPARs, TRPV1, and CaV3 
channels, and uniquely targets 5HT1a and FAAH inhibition. 

V. Medical Cannabis and the eCBome 
Phytocannabinoids found in cannabis, such as tetrahydrocannabinol (THC) and 
cannabidiol (CBD), interact with various eCBome targets, including CB1, CB2, GPR55, 
TRPV1, and PPARs (Table 1). These interactions allow phytocannabinoids to potentially 
mimic or modulate the effects of endocannabinoids and endocannabinoid-like 
molecules on processes like pain, appetite, inflammation, and immunity [13,14,15]. 
Cannabis-based medicinal products (CBMPs) containing THC, CBD, or a combination 
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of both, therefore hold therapeutic potential by targeting components of the eCBome 
system. 
Evidence supporting the use of cannabis/cannabinoids for specific conditions:  

Chronic Pain 
Endocannabinoids like AEA and 2-AG modulate pain perception by interacting with CB1, 
CB2, and TRPV1 receptors, inhibiting nociceptive signaling [7,23]. Phytocannabinoids 
like THC from Type 1 CBMPs and CBD from Type 3 CBMPs can mimic these analgesic 
effects by engaging the same targets [13,14]. Typical dosing involves combining THC 
(2.5-10 mg) and CBD (5-20 mg) orally or via oromucosal sprays, individualized based on 
response and tolerability [50]. 

Seizure Disorders 
CBD exhibits anticonvulsant effects by modulating TRPV1 and GPR55 (Table 1). The 
licensed CBMP Epidyolex (CBD isolate) targets TRPV1, GPR55, 5-HT1A, and PPARs for 
treating seizures in Lennox-Gastaut and Dravet syndromes [51]. Typical dosing starts at 
2.5 mg/kg CBD twice daily, gradually increasing to 10-20 mg/kg/day based on response 
[51]. 

Muscle Spasticity (e.g., Multiple Sclerosis) 
The licensed CBMP Sativex (THC:CBD spray) engages CB1, CB2, TRPV1, GPR55, and 5-
HT1A (Table 1), recommended for moderate to severe spasticity in multiple sclerosis 
when other treatments are ineffective [51]. Dosing starts with one spray/day, gradually 
increasing to a maximum of 12 sprays/day, with each spray containing 2.7 mg THC and 
2.5 mg CBD [51]. 

Nausea and Vomiting (Chemotherapy-induced) 
Type 1 CBMPs containing THC interact with CB1, CB2, GPR55, TRPV1, and opioid 
receptors (Table 1) to stimulate appetite and reduce nausea/vomiting by modulating 
CB1 in the hypothalamus and brainstem [52,53]. 

Appetite Stimulation 
The eCBome regulates appetite and energy homeostasis through the interplay of 
components listed in Tables 1 and 4. Endocannabinoids like AEA and 2-AG stimulate 
appetite via CB1 receptors in the hypothalamus [54]. Type 1 CBMPs containing THC 
mimic these effects by interacting with various eCBome targets, including CB1, CB2, 
GPR55, TRPV1, and PPARs, as presented in Table 1 [13]. 

CNS Disorders 
The eCBome's roles in neuroplasticity, neuroprotection, immune regulation, and 
signaling pathways implicated in cancer cell migration and tumor progression (Table 4) 
make it a potential target for many CNS disorders including neurodegenerative 
diseases, traumatic brain injury, stroke, and various cancers [19,32,55].  
 
Preclinical studies show CBD and other eCBome modulators can exert neuroprotective 
effects in Parkinson's disease by reducing oxidative stress, neuroinflammation, and 
excitotoxicity, potentially alleviating motor symptoms and cognitive impairments [15]. A 
recent mixed studies systematic review on cannabinoids in behavioral, psychological, 
and motor symptoms of neurocognitive disorders confirm that Type III CBMPs (1:20, 
THC:CBD) are associated with improved motor symptoms in conditions like 
Huntington’s disease (HD) and Parkinson’s disease (PD) [56]. 
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In post mortem brain biopsies from deceased Alzheimer's patients, AEA and its lipid 
precursor NArPE have been found to be significantly reduced in the mid-frontal and 
temporal cortices [57]. Furthermore, both CB2 and GPR55 were recently discovered to 
be upregulated very early on in advanced AD disease mouse models [58]. The 
researchers also found that CB2 expression levels in astrocytes and glia cells, as well as 
GPR55 expression levels in neurons, were upregulated in response to Aβ42-treatment, 
the toxic prion-like molecule associated with neuronal loss in advanced Alzheimer’s 
disease. In a recent preclinical animal study, researchers showed that APP-PS1 mice in 
chronic intermittent cannabinoid treatment (5 days on, 2 days off) with either a CB2 
agonist, JWH-133, or whole plant cannabis (15% THC, <1% CBD) (63), reduced anxiety, 
partially reversed cognitive defects, reduced number and size of amyloid plaques, and 
improved cerebral glucose metabolism [59]. eCBome modulation in patients with 
Alzheimer’s holds enormous therapeutic potential and clinical research desperately 
needs to catch up. 

Psychiatric Disorders 
The use of medical cannabis for treating psychiatric disorders remains controversial 
due to limited high-quality evidence supporting its efficacy and safety. While some 
studies suggest potential benefits of cannabinoids like CBD for anxiety, depression, 
PTSD, and sleep disorders, systematic reviews conclude that current evidence is of 
poor quality and inconsistent. 
Concerns exist about cannabis worsening certain psychiatric conditions like anxiety, 
depression, and bipolar disorder in some individuals. Clinicians need to carefully weigh 
the risks and benefits, monitor for side effects, and base treatment decisions on the 
best available evidence. More rigorous research is warranted to establish the 
therapeutic role of medical cannabis in psychiatry. 

Autism Spectrum Disorder (ASD) 
Emerging evidence suggests that the eCBome may be involved in the pathophysiology of 
neurodevelopmental disorders like autism spectrum disorder (ASD). A large number of 
eCBome alterations in endocannabinoid signaling have been linked to mechanisms and 
symptoms of ASD, such as abnormal neural development, immune dysfunction, social 
deficits, and repetitive behaviors [60]. The endocannabinoid-microbiota axis is also 
often altered in patients with ASD which has sparked interest in exploring the axis using 
cannabinoids, nutritional interventions, and "gut-therapy" as potential treatment 
options for ASD. Research on medical cannabis for neurodevelopmental disorders is 
still very limited but holds much future promise. 

Cancer 
The eCBome's involvement in immune regulation and its interactions with signaling 
pathways implicated in cancer cell migration and tumor progression make it a potential 
target for cancer therapy [19,55]. 
In breast cancer, targeting CB2-GPR55 heterodimers inhibits cancer cell migration and 
metastasis [17,61]. CBD exerts anti-proliferative and pro-apoptotic effects in breast 
cancer cells, potentially through TRPV1 and GPR55 modulation [14]. In glioblastoma, 
eCBome modulators like AEA and CBD inhibit tumor growth, angiogenesis, and 
invasion, potentially through CB1, CB2, and TRPV1 [32]. 
In glioblastoma, a highly aggressive form of brain cancer, the eCBome has been 
implicated in regulating tumor growth, angiogenesis, and invasion [32]. Preclinical 
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studies have shown that eCBome modulators like AEA and CBD can inhibit 
glioblastoma cell proliferation and induce apoptosis, potentially through modulation of 
CB1, CB2, and TRPV1 receptors [32]. While promising, further research is needed to 
translate these findings into clinical applications, optimizing dosing, formulations, and 
delivery methods for targeting specific eCBome components and signaling pathways in 
different conditions. 

Potential Challenges and Limitations 
While the CBMPs present promising therapeutic opportunities, several challenges and 
limitations need to be addressed when targeting the eCBome system for therapeutic 
interventions: 

Regulatory Hurdles 
The regulatory landscape surrounding medical cannabis and eCBome modulators 
varies widely across regions, posing challenges for researchers, healthcare 
professionals, and patients. Addressing issues like product standardization, potential 
adverse effects, medical education, and the need for further research to establish 
optimal dosing and formulations is essential for advancing our understanding of the 
eCBome's therapeutic potential. In the United Kingdom, CBMPs were rescheduled in 
2018, allowing specialist clinicians to legally prescribe them for certain conditions. 
However, CBMPs remain tightly regulated, with strict guidelines on prescribing, 
manufacturing, and supply chain controls. The regulatory framework is overseen by the 
Medicines and Healthcare products Regulatory Agency (MHRA) and the Home Office. 

Potential Adverse Effects 
While cannabinoids and other eCBome modulators have demonstrated therapeutic 
benefits, they may also be associated with potential adverse effects, such as cognitive 
impairment, psychoactive effects, and cardiovascular or respiratory complications. 
These adverse effects may vary depending on the specific compounds, dosages, and 
individual patient factors, necessitating careful monitoring and risk-benefit 
assessments. 

Need for Further Research 
Despite the growing body of knowledge surrounding the eCBome, there is still a need for 
extensive research to fully understand the complex interactions between its various 
components, receptors, and signaling pathways. Elucidating these intricate 
mechanisms is crucial for developing targeted and personalized therapeutic 
interventions with optimal efficacy and minimal side effects. 
 

VI. Educational and Clinical Implications 

Need for Education on CBMPs and the eCBome 
Traditionally, medical curricula and mainstream literature have largely overlooked the 
ECS and its expanded eCBome components due to stigma associated with cannabis. 
Integrating eCBome knowledge into medical education is crucial for equipping future 
professionals to recognize conditions influenced by this system, such as chronic pain, 
neurodegenerative disorders, and metabolic diseases [21,61]. 
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As illustrated in Table 2, the eCBome encompasses a broader range of ligands, 
receptors, enzymes, and signaling pathways than the classical ECS, demonstrating far-
reaching health implications. Providing a holistic eCBome perspective will foster 
appreciation for its interconnectedness with regulatory networks like the immune, 
nervous, and endocrine systems. This understanding is crucial for developing 
comprehensive patient care approaches, particularly regarding medical cannabis 
applications highlighted by the diverse ‘ECS Interventions’ in Table 5 and Figure 3. 

Guidelines for Authorizing Cannabis and Monitoring Patients 
Clear guidelines based on scientific evidence are needed for authorizing and monitoring 
CBMP use. These should address conditions where CBMPs demonstrate efficacy, like 
chronic pain, seizures, muscle spasticity, and chemotherapy-induced nausea/vomiting 
[50,62]. Emphasizing precise dosing, formulation, and administration routes is vital, as 
these factors impact CBMP efficacy and safety [62,63]. 
 
As presented in Table 1, phytocannabinoids interact with various eCBome targets, 
leading to diverse effects [13,14]. Understanding the eCBome's complexity and 
cannabinoid pharmacokinetics is essential for developing targeted, personalized 
interventions. Guidelines should outline protocols for monitoring patient responses, 
adverse effects, and drug interactions, considering the eCBome's intricate physiological 
interactions highlighted in Table 4 [33,35,36]. 

Addressing Common Misconceptions and Stigma Surrounding CBMPs 
Despite scientific evidence supporting CBMP therapeutic potential, misconceptions 
and stigma persist. Addressing these within medical curricula is crucial for promoting 
evidence-based decision-making and fostering informed understanding of medical 
cannabis. 
 
A common misconception is perceiving medical cannabis as a recreational drug with 
limited therapeutic value. However, as demonstrated in Table 5 and Figure 3, 
phytocannabinoids and lifestyle interventions modulate various eCBome targets, 
affecting diverse processes and offering therapeutic benefits [13,14,15,42,43]. 
 
Stigma may stem from cannabis' historical association with substance abuse and legal 
restrictions. However, as eCBome understanding evolves, an objective, scientific 
approach to medical cannabis is essential. Incorporating the latest research into 
curricula and fostering open discussions can develop informed, unbiased perspectives 
on its potential benefits, risks, and therapeutic applications alongside other lifestyle 
ECS interventions outlined in Table 5 and Figure 3. 
 
In summary, integrating the eCBome and medical cannabis into medical education is 
crucial for equipping future professionals with knowledge for informed decision-making 
and optimal patient care. Addressing education needs, establishing clear guidelines, 
and combating misconceptions and stigma will enable harnessing this system's full 
potential and leveraging a range of diverse ECS-modulating interventions for human 
health and well-being. 
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VII. Future Directions 
Ongoing Research and Longitudinal Studies 
While providing invaluable insights, longitudinal human studies and well-designed 
clinical trials are crucial to fully capture the eCBome's dynamic nature and long-term 
implications [20,21,61,64]. Longitudinal studies could elucidate the eCBome's roles in 
physiological processes, potential dysregulation in pathological conditions, and the 
impact of lifestyle factors like diet and exercise, as highlighted in Table 5.  

Exploring Endogenous eCBome Mediators for Therapeutic Applications 
As poignantly highlighted by the late great Professor Raphael Mechoulam in his final 
scientific article before passing, "although extensive data are available for the 
endocannabinoids, they have not been investigated in, or even administered to, 
humans—more than 25 years since they were reported! Are we missing something?" 
[66]. This sentiment underscores the urgency to bridge the gap between our increased 
understanding of the eCBome and its practical exploration in human subjects, which 
has largely been limited to phytocannabinoids and medical cannabis.  
 
In line with the principles of modern polypharmacology, leveraging multiple 
mechanisms of action acting on the eCBome is likely to improve therapeutic outcomes. 
One promising avenue is the methodical exploration of the therapeutic potential of 
endogenous eCBome mediators. As endogenous compounds, these mediators 
intrinsically possess high selectivity, low off-target effects, and favorable safety profiles. 
Future research should focus on investigating the therapeutic applications of 
endogenous eCBome components, such as endocannabinoids, N-acylethanolamines, 
and other lipid mediators, as well as their interactions with various receptors and 
signaling pathways. 
 
Supplementation with compounds like PEA and OEA, which are known to interact with 
eCBome targets like PPARs, TRPV1 [24,27], should be explored with regards to their 
ability to further modulate the eCBome and enhance therapeutic outcomes of CBMPs 
(Table 1). However, the availability of pharmaceutical-grade formulations of such 
compounds is currently limited, and their practical implementation may face regulatory 
and accessibility challenges that need to be addressed. 
 
The discovery of endogenous ligands and their interactions with eCBome heterodimers 
(Table 3) could pave the way for innovative therapeutic agents mimicking or modulating 
these effects [11,12,17,19,54]. 

Development of Novel Cannabinoid-Based Medications 
Complementing the exploration of endogenous mediators, the eCBome represents a 
promising target for novel phytocannabinoid-based medications. The data presented in 
Table 1 illustrate how phytocannabinoids like THC and CBD interact with various 
eCBome targets, modulating diverse physiological processes [13,14,15]. Future 
research should focus on developing more selective and targeted compounds with 
higher precision and reduced side effects, as well as extensively exploring the 
therapeutic potential of minor cannabinoids [20,63]. 
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Clinical Trials and Personalized Approaches 
As novel cannabinoid-based medications progress, well-designed clinical trials are 
crucial for evaluating safety, efficacy, and therapeutic applications across diverse 
populations, enabling personalized treatment approaches [61,64]. Trials should 
investigate optimal dosing, formulation, and administration routes, considering the 
diverse eCBome targets and potential interactions with lifestyle interventions (Table 5 
and Figure 3). 

Elucidating Molecular Mechanisms and Signaling Pathways 
Further elucidating the eCBome's molecular mechanisms and signaling pathways is 
vital for developing targeted interventions [20,21]. Advanced techniques like 
proteomics, metabolomics, and computational modeling could provide insights into 
complex signaling cascades and regulatory networks involving lipid mediators, 
enzymes, and molecular targets (Tables 1 and 3) [61,64]. Exploring epigenetic and 
genetic factors influencing eCBome component expression and activity could pave the 
way for personalized medicine approaches [20]. 

Interdisciplinary Collaborations and Computational Approaches 
The eCBome's intricate nature necessitates interdisciplinary collaborations and 
computational approaches, fostering knowledge exchange and innovative solutions 
[61,64]. Integrating machine learning and artificial intelligence can accelerate discovery 
processes, facilitate data analysis from omics studies and clinical trials, identify 
patterns, predict outcomes, and generate hypotheses for experimental validation [61]. 

The Dynamic eCBome 
As understanding evolves, embracing the eCBome's fluid and dynamic nature is crucial. 
Future research should remain open to expanding boundaries, incorporating newly 
identified lipid mediators, enzymes, or molecular targets playing a role in its functioning 
[20,21]. Researchers should adapt their understanding of the eCBome's interactions 
with other physiological systems as new evidence emerges, enabling a comprehensive 
exploration of its regulatory roles [20,21]. By adopting a dynamic and adaptable 
approach, the scientific community can ensure the eCBome remains at the forefront of 
scientific inquiry, continuously evolving to reflect cutting-edge research [20,61]. 

VIII. Conclusion 
The eCBome has emerged as a pivotal physiological regulator, orchestrating a multitude 
of processes essential for maintaining homeostasis within the human body [2,61]. Its 
far-reaching influence spans diverse domains, as highlighted in Table 4, including 
neuromodulation, pain management, neuroplasticity, immune regulation, metabolic 
homeostasis, cardiovascular regulation, and specialized systems like reproduction and 
musculoskeletal function. 
 
The eCBome's complexity arises from its expanded array of lipid mediators, enzymes, 
molecular targets, and signaling pathways beyond the classical ECS components, as 
illustrated in Figure 1 [4,20]. This intricate network modulates physiological equilibrium 
through interconnections with various systems, including the immune, nervous, and 
metabolic systems [20,21]. 
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Moreover, the formation of receptor heterodimers, such as CB1-D1/D2, CB1-μ-Opioid, 
and CB2-GPR55 (Table 3), further amplifies the eCBome's regulatory scope, influencing 
processes like motor function, pain perception, cancer cell migration, and tumor 
progression [11,12,17,18,19,54,67]. 
 
As our understanding deepens, the eCBome's therapeutic potential becomes 
increasingly apparent. Targeted interventions like CBMPs and other eCBome 
modulators offer opportunities for developing innovative treatments across various 
pathological conditions, including chronic pain, neurodegenerative disorders, 
metabolic diseases, and inflammatory conditions [21,61]. 
 
The eCBome's diversity of molecular targets and signaling pathways (Tables 1 and 4) 
enables personalized therapeutic approaches tailored to individual patient profiles, 
enhancing treatment efficacy while minimizing adverse effects. However, realizing this 
potential requires promoting evidence-based decision-making when considering 
medical cannabis, addressing misconceptions, and fostering an objective, scientific 
perspective [13,14,15,62]. 
 
In conclusion, the eCBome stands as a testament to the intricate complexity of human 
physiology and the vast potential for therapeutic innovation. By embracing a dynamic 
and inclusive understanding of this pivotal system, and promoting evidence-based 
decision-making, the medical and scientific communities can unlock new frontiers in 
personalized medicine, ultimately improving human health and well-being on a global 
scale [21,61]. 
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